Part Number Hot Search : 
STA3350 T421004 0N08S 5KP20 LC46A 29312 B0505 BF494
Product Description
Full Text Search
 

To Download IRF6678TRPBF Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
  www.irf.com 1 06/15/06 irf6678pbf IRF6678TRPBF directfet   power mosfet  applicable directfet outline and substrate outline (see p.7,8 for details)  fig 1. typical on-resistance vs. gate voltage  

       fig 2. typical on-resistance vs. gate voltage sq sx st mq mx mt 0 1 02 03 04 05 06 0 q g total gate charge (nc) 0.0 1.0 2.0 3.0 4.0 5.0 6.0 v g s , g a t e - t o - s o u r c e v o l t a g e ( v ) v ds = 24v v ds = 15v i d = 23a v dss v gs r ds(on) r ds(on) 30v max 20v max 1.7m ? @ 10v 2.3m ? @ 4.5v q g tot q gd q gs2 q rr q oss v gs(th) 43nc 15nc 4.0nc 46nc 28nc 1.8v 0 1 2 3 4 5 6 7 8 9 10 v gs, gate -to -source voltage (v) 0 5 10 15 20 t y p i c a l r d s ( o n ) ( m ? ) i d = 29a t j = 25c t j = 125c   rohs compliant   lead-free (qualified up to 260c reflow)  application specific mosfets  ideal for cpu core dc-dc converters  low conduction losses  high cdv/dt immunity  low profile (<0.7mm)  dual sided cooling compatible   compatible with existing surface mount techniques  descriptionthe irf6678pbf combines the latest hexfet? power mosfet silicon technology with the advanced directfet tm packaging to achieve the lowest on-state resistance in a package that has the footprint of a so-8 and only 0.7 mm profile. the directfet package is compatible with existing layout geometries used in power applications, pcb assembly equipment and vapor phase, infra-red or convection sol dering techniques. application note an-1035 is followed regarding the manufacturing methods and processes. the directfet package allow s dual sided cooling to maximize thermal transfer in power systems, improving previous best thermal resistance by 80%. the irf6678pbf balances industry leading on-state resistance while minimizing gate charge along with ultra low package inductance to reduce both conduction and switching losses. the reduced losses make this product ideal for high frequency/high efficiency dc-d c convert- ers that power high current loads such as the latest generation of microprocessors. the irf6678pbf has been optimized for parameters that are critical in synchronous buck converters syncfet sockets. directfet  isometric  absolute maximum ratin g s parameter units v ds drain-to-source voltage v v gs gate-to-source voltage i d @ t a = 25c continuous drain current, v gs @ 10v i d @ t a = 70c continuous drain current, v gs @ 10v a i d @ t c = 25c continuous drain current, v gs @ 10v  i dm pulsed drain current  e as single pulse avalanche energy  mj i ar avalanche current  a max. 24 150240 20 3030 210 24  click on this section to link to the appropriate technical paper.  click on this section to link to the directfet website.   surface mounted on 1 in. square cu board, steady state.  t c measured with thermocouple mounted to top (drain) of part.   repetitive rating; pulse width limited by max. junction temperature.  starting t j = 25c, l = 0.75mh, r g = 25 ? , i as = 23a.  downloaded from: http:///
 2 www.irf.com   repetitive rating; pulse width limited by max. junction temperature.  pulse width 400s; duty cycle 2%.  static @ t j = 25c (unless otherwise specified) parameter min. typ. max. units bv dss drain-to-source breakdown voltage 30 CCC CCC v ? v dss / ? t j breakdown voltage temp. coefficient CCC 24 CCC mv/c r ds(on) static drain-to-source on-resistance CCC 1.7 2.2 m ? CCC 2.3 3.0 v gs(th) gate threshold voltage 1.35 CCC 2.25 v ? v gs(th) / ? t j gate threshold voltage coefficient CCC -6.3 CCC mv/c i dss drain-to-source leakage current CCC CCC 1.0 a CCC CCC 150 i gss gate-to-source forward leakage CCC CCC 100 na gate-to-source reverse leakage CCC CCC -100 gfs forward transconductance 100 CCC CCC s q g total gate charge CCC 43 65 q gs1 pre-vth gate-to-source charge CCC 12 CCC q gs2 post-vth gate-to-source charge CCC 4.0 CCC nc q gd gate-to-drain charge CCC 15 q godr gate charge overdrive CCC 12 CCC see fig. 15 q sw switch charge (q gs2 + q gd ) CCC 19 CCC q oss output charge CCC 28 CCC nc r g gate resistance CCC 1.0 2.2 ? t d(on) turn-on delay time CCC 21 CCC t r rise time CCC 71 CCC ns t d(off) turn-off delay time CCC 27 CCC t f fall time CCC 8.1 CCC c iss input capacitance CCC 5640 CCC c oss output capacitance CCC 1260 CCC pf c rss reverse transfer capacitance CCC 570 CCC diode characteristics parameter min. typ. max. units i s continuous source current CCC CCC 89 (body diode) a i sm pulsed source current CCC CCC 240 (body diode)  v sd diode forward voltage CCC 0.78 1.2 v t rr reverse recovery time CCC 43 65 ns q rr reverse recovery charge CCC 46 69 nc v ds = 24v, v gs = 0v, t j = 125c v gs = 20v v gs = -20v v gs = 4.5v i d = 24a v gs = 0v v ds = 15v i d = 24a t j = 25c, i f = 24a di/dt = 100a/s
 see fig. 18 t j = 25c, i s = 24a, v gs = 0v
showing the integral reverse p-n junction diode. conditions v gs = 0v, i d = 250a reference to 25c, i d = 1ma v gs = 10v, i d = 30a
v gs = 4.5v, i d = 24a
v ds = v gs , i d = 250a v ds = 24v, v gs = 0v mosfet symbol clamped inductive load v ds = 15v, i d = 24a conditions see fig. 16 & 17 ? = 1.0mhz v ds = 16v, v gs = 0v v dd = 16v, v gs = 4.5v 
v ds = 15v downloaded from: http:///
 www.irf.com 3 fig 3. maximum effective transient thermal impedance, junction-to-ambient 1e-006 1e-005 0.0001 0.001 0.01 0.1 1 10 100 t 1 , rectangular pulse duration (sec) 0.001 0.01 0.1 1 10 100 t h e r m a l r e s p o n s e ( z t h j a ) 0.20 0.10 d = 0.50 0.02 0.01 0.05 single pulse ( thermal response ) notes: 1. duty factor d = t1/t2 2. peak tj = p dm x zthja + tc ri (c/w) i (sec) 0.6784 0.0008617.299 0.57756 17.566 8.94000 9.4701 106 j j 1 1 2 2 3 3 r 1 r 1 r 2 r 2 r 3 r 3 ci i / ri ci= i / ri a a 4 4 r 4 r 4 absolute maximum ratin g s parameter units p d @t a = 25c power dissipation w p d @t a = 70c power dissipation p d @t c = 25c power dissipation  t p peak soldering temperature c t j operating junction and t stg storage temperature range thermal resistance parameter typ. max. units r ja junction-to-ambient  CCC 45 r ja junction-to-ambient  12.5 CCC r ja junction-to-ambient  20 CCC c/w r jc junction-to-case  CCC 1.4 r j-pcb junction-to-pcb mounted 1.0 CCC linear derating factor  w/c 1.8 0.022 270 -40 to + 150 max. 89 2.8 used double sided cooling , mounting pad. mounted on minimum footprint full size board with metalized back and with small clip heatsink.  r is measured at   
    surface mounted on 1 in. square cu (still air).  

 with small clip heatsink (still air)   mounted on minimum footprint full size board withmetalized back and with small clip heatsink (still air) downloaded from: http:///
 4 www.irf.com fig 5. typical output characteristics fig 4. typical output characteristics fig 6. typical transfer characteristics fig 7. normalized on-resistance vs. temperature fig 8. typical capacitance vs.drain-to-source voltage fig 9. normalized typical on-resistance vs. drain current and gate voltage 0.1 1 10 100 1000 v ds , drain-to-source voltage (v) 1 10 100 1000 i d , d r a i n - t o - s o u r c e c u r r e n t ( a ) vgs top 10v 5.0v 4.5v 4.0v 3.5v 3.0v 2.8v bottom 2.5v 60s pulse width tj = 25c 2.5v 0.1 1 10 100 1000 v ds , drain-to-source voltage (v) 10 100 1000 i d , d r a i n - t o - s o u r c e c u r r e n t ( a ) 2.5v 60s pulse width tj = 150c vgs top 10v 5.0v 4.5v 4.0v 3.5v 3.0v 2.8v bottom 2.5v -60 -40 -20 0 20 40 60 80 100 120 140 160 t j , junction temperature (c) 0.5 1.0 1.5 t y p i c a l r d s ( o n ) ( n o r m a l i z e d ) i d = 29a v gs = 10v v gs = 4.5v 1 10 100 v ds , drain-to-source voltage (v) 100 1000 10000 100000 c , c a p a c i t a n c e ( p f ) v gs = 0v, f = 1 mhz c iss = c gs + c gd , c ds shorted c rss = c gd c oss = c ds + c gd c oss c rss c iss 20 60 100 140 180 220 260 i d , drain current (a) 0 5 10 15 20 25 t y p i c a l r d s ( o n ) ( m ? ) t j = 25c vgs = 3.0v vgs = 3.5v vgs = 4.0v vgs = 4.5v vgs = 5.0v vgs = 10v 1 2 3 4 v gs , gate-to-source voltage (v) 0.1 1 10 100 1000 i d , d r a i n - t o - s o u r c e c u r r e n t ( ) t j = 150c t j = 25c t j = -40c v ds = 15v 60s pulse width downloaded from: http:///
 www.irf.com 5 fig 13. threshold voltage vs. temperature fig 12. maximum drain current vs. case temperature fig 10. typical source-drain diode forward voltage fig11. maximum safe operating area fig 14. maximum avalanche energy vs. drain current 0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 2.2 v sd , source-to-drain voltage (v) 0 1 10 100 1000 i s d , r e v e r s e d r a i n c u r r e n t ( a ) t j = 150c t j = 25c t j = 40c v gs = 0v 0.01 0.10 1.00 10.00 100.00 v ds , drain-to-source voltage (v) 0.1 1 10 100 1000 i d , d r a i n - t o - s o u r c e c u r r e n t ( a ) operation in this area limited by r ds (on) t a = 25c t j = 150c single pulse 100sec 1msec 10msec 25 50 75 100 125 150 t c , case temperature (c) 0 20 40 60 80 100 120 140 160 180 i d , d r a i n c u r r e n t ( a ) limited by package -75 -50 -25 0 25 50 75 100 125 150 t j , temperature ( c ) 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 2.2 v g s ( t h ) g a t e t h r e s h o l d v o l t a g e ( v ) i d = 250a 25 50 75 100 125 150 starting t j , junction temperature (c) 0 100 200 300 400 500 600 700 800 900 e a s , s i n g l e p u l s e a v a l a n c h e e n e r g y ( m j ) i d top 8.7a 11a bottom 23a downloaded from: http:///
 6 www.irf.com d.u.t. v ds i d i g 3ma v gs .3 f 50k ? .2 f 12v current regulator same type as d.u.t. current sampling resistors + - fig 15a. gate charge test circuit fig 15b. gate charge waveform vds vgs id vgs(th) qgs1 qgs2 qgd qgodr fig 16b. unclamped inductive waveforms t p v (br)dss i as fig 16a. unclamped inductive test circuit fig 17b. switching time waveforms v gs v ds 90% 10% t d(on) t d(off) t r t f fig 17a. switching time test circuit v gs pulse width < 1s duty factor < 0.1% v dd v ds l d d.u.t + - r g i as 0.01 ? t p d.u.t l v ds + - v dd driver a 15v 20v   downloaded from: http:///
 www.irf.com 7 fig 18. 

    for n-channel hexfet   power mosfets p.w. period di/dt diode recovery dv/dt ripple 5% body diode forward drop re-appliedvoltage reverserecovery current body diode forward current v gs =10v v dd i sd driver gate drive d.u.t. i sd waveform d.u.t. v ds waveform inductor curent d = p. w . period     
      
    

  
 ? 
     ? 
  ? 
       
 ?  

    ?     !  "#"" ?   

    $
%% ? "#"" &   #  + - + + + - - -         
 directfet  substrate and pcb layout, mx outline  (medium size can, x-designation). please see directfet application note an-1035 for all details regarding the assembly of directfet.this includes all recommendations for stencil and substrate designs. g = gate d = drain s = source dd dd g ss downloaded from: http:///
 8 www.irf.com directfet  outline dimension, mx outline (medium size can, x-designation).please see directfet application note an-1035 for all details regarding the assembly of directfet. this includes all recommendations for stencil and substrate designs. directfet  part marking code a b c d e f g h j k l m r p max 0.250 0.201 0.156 0.018 0.028 0.028 0.056 0.033 0.017 0.039 0.095 0.0274 0.0031 0.007 max 6.35 5.05 3.95 0.45 0.72 0.72 1.42 0.84 0.42 1.01 2.41 0.676 0.080 0.17 min 6.25 4.80 3.85 0.35 0.68 0.68 1.38 0.80 0.38 0.88 2.28 0.616 0.020 0.08 min 0.246 0.189 0.152 0.014 0.027 0.027 0.054 0.032 0.015 0.035 0.090 0.0235 0.0008 0.003 dimensions metric imperial downloaded from: http:///
 www.irf.com 9 data and specifications subject to change without notice. this product has been designed and qualified for the consumer market. qualification standards can be found on irs web site. ir world headquarters: 233 kansas st., el segundo, california 90245, usa tel: (310) 252-7105 tac fax: (310) 252-7903 visit us at www.irf.com for sales contact information . 06/06 directfet  tape & reel dimension (showing component orientation). standard option (qty 4800) min 330.0 20.2 12.8 1.5 100.0 n.c 12.4 11.9 code a b c d e f g h max n.c n.c 13.2 n.c n.c 18.4 14.4 15.4 min 12.992 0.795 0.504 0.059 3.937 n.c 0.488 0.469 max n.c n.c 0.520 n.c n.c 0.724 0.567 0.606 metric imperial tr1 option (qty 1000) imperial min 6.9 0.75 0.53 0.059 2.31 n.c 0.47 0.47 max n.c n.c 12.8 n.c n.c 13.50 12.01 12.01 min 177.77 19.06 13.5 1.5 58.72 n.c 11.9 11.9 metric max n.c n.c 0.50 n.c n.c 0.53 n.c n.c reel dimensions note: controlling dimensions in mm std reel quantity is 4800 parts. (ordered as IRF6678TRPBF). for 1000 parts on 7" reel, order irf6678tr1pbf min 7.90 3.90 11.90 5.45 5.10 6.50 1.50 1.50 code a b c d e f g h max 8.10 4.10 12.30 5.55 5.30 6.70 n.c 1.60 min 0.311 0.154 0.469 0.215 0.201 0.256 0.059 0.059 max 0.319 0.161 0.484 0.219 0.209 0.264 n.c 0.063 dimensions metric imperial loaded tape feed direction downloaded from: http:///
note: for the most current drawings please refer to the ir website at: http://www.irf.com/package/ downloaded from: http:///


▲Up To Search▲   

 
Price & Availability of IRF6678TRPBF

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X